Ekman Transport Dominates Local Air–Sea Fluxes in Driving Variability of Subantarctic Mode Water
نویسندگان
چکیده
Subantarctic Mode Water (SAMW) is formed by deep convection in winter on the equatorward side of the Antarctic Circumpolar Current. Observations south of Australia show that the SAMW temperature (T) and salinity (S) vary significantly from year to year. The magnitude and density-compensating nature of the temperature and salinity changes cannot be explained by variations in air–sea exchange of heat and freshwater in the subantarctic zone where SAMW is formed. Rather, the T and S variability reflects variations in the equatorward Ekman transport of cool, low salinity water across the subantarctic front. Experiments with a coupled climate model suggest that the observations south of Australia are typical of the subantarctic zone. The model changes in SAMW properties are correlated significantly (at 99% level) with changes in wind stress and northward Ekman transport of cool lowsalinity water. In contrast, air–sea heat flux anomalies are mostly a response to changes in SST, and anomalies in precipitation minus evaporation in the subantarctic zone are too small to account for the model SAMW salinity variations. Mode waters provide significant reservoirs of heat and freshwater that extend below the depth of the seasonal thermocline and, hence, can persist from year to year. The fact that wind stress variations can drive changes in mode water properties therefore has implications for climate variability.
منابع مشابه
Sea Surface Temperature Variability along the Path of the Antarctic Circumpolar Current
The spatial and temporal distributions of sea surface temperature (SST) anomalies in the Antarctic Circumpolar Current (ACC) are investigated, using monthly data from the NCEP–NCAR reanalysis for the period 1980–2004. Patterns of atmospheric forcing are identified in observations of sea level pressure and air–sea heat fluxes. It is found that a significant fraction of SST variability in the ACC...
متن کاملمطالعه دمای سطح آب و انتقال اکمن در ناحیه خلیج فارس
The wind drift motion of the water which is produced by the stress of the wind exerted upon the surface of the ocean is described by Ekmans theory (1905). Using the mean monthly values for the wind stress and SST, seasonal Ekman transport for the Persian Gulf was computed and contoured. The geostrophic winds have combined with the SST to estimate the effect of cooling due to Ekman transport o...
متن کاملInterannual Extremes in New Zealand Precipitation Linked to Modes of Southern Hemisphere Climate Variability
Interannual extremes in New Zealand rainfall and their modulation by modes of Southern Hemisphere climate variability are examined in observations and a coupled climate model. North Island extreme dry (wet) years are characterized by locally increased (reduced) sea level pressure (SLP), cold (warm) sea surface temperature (SST) anomalies in the southern Tasman Sea and to the north of the island...
متن کاملInvestigation of Geostrophic and Ekman Surface Current Using Satellite Altimetry Observations and Surface Wind in Persian Gulf and Oman Sea
The rise of satellite altimetry is a revolution in the ocean sciences. Due to its global coverage and its high resolution, altimetry classically outperforms in situ water level measurement. Ekman and geostrophic currents are large parts of the ocean’s current, playing a vital role in global climate variations. According to the classic oceanography, Ekman and geostrophic currents can be calculat...
متن کاملFriction, Frontogenesis, and the Stratification of the Surface Mixed Layer
The generation and destruction of stratification in the surface mixed layer of the ocean is understood to result from vertical turbulent transport of buoyancy and momentum driven by air–sea fluxes and stresses. In this paper, it is shown that the magnitude and penetration of vertical fluxes are strongly modified by horizontal gradients in buoyancy and momentum. A classic example is the strong r...
متن کامل